
Simplifying Test
Automation with
tm_devices for Python
 HOW-TO GUIDE

Introduction
Engineers across many industries use automation to
extend the capabilities of their test instruments. Many
engineers choose the free programming language Python
to accomplish this. There are many significant advantages
that make Python a great programming language for
automation:

• Versatility

• Easy to teach and learn

• Code readability

• Widely available knowledge bases and modules

There are two main use cases for automation:

• Routines that mimic human behavior to automate the
front panel and save time e.g., automated compliance
testing. Rather than sitting down at the scope, adding
appropriate measurements, and writing down the
results every time you need to test a new part, the
engineer develops a script that does all of that and
displays the result.

• Uses that extend the functionality of the instrument; for
example: measurement logging, validation, or quality
assurance. Automation allows the engineer to execute
complex tests without many of the downsides inherent
to those tests. There's no need for an operator to set up
the scope and manually record the results, and the test
can be performed the same way every time.

This technical brief will cover what you need to get started
programming scopes in Python, including the basics of
programmatic interfaces and how to download and run
an example.

Table of Contents
Introduction ...2

What is a Programmatic Interface?3

What Is the tm_devices Package?3

Setting up your Environment ...4

Installation and Prerequisites Overview4

PyCharm Community (free) edition5

Visual Studio Code ..8

Example Code ..9

Imports ..9

Code Snippets ...9

Using IntelliSense/Code Completion 10

Docstring Help .. 11

Extra Resources ... 13

Troubleshooting ... 13

Appendix A – Offline Installation of tm_devices 14

Local Installation in PyCharm 14

Local installation in Visual Studio Code 16

2 | WWW.TEK.COM

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

WWW.TEK.COM | 3

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

What is a Programmatic Interface?
A programmatic interface (PI) is a boundary or set of
boundaries between two computing systems that can
be programmed to execute specific behaviors. For our
purposes, it's the bridge between the computer that
runs every piece of Tektronix test equipment, and the
application written by an end user. To narrow this even
further, it is a set of commands that can be sent remotely
to an instrument which then processes those commands
and executes a corresponding task. The PI Stack (Figure
1) shows the flow of information from the host controller
down to the instrument. The application code written by
the end user defines the behavior of the target instrument.
This is usually written in one of the development platforms
popular in the industry such as Python, MATLAB, LabVIEW,
C++, or C#. This application will send data using the
Standard Commands for Programmable Instrumentation
(SCPI) format, which is a standard supported by most test
and measurement equipment. SCPI commands are often
sent through a Virtual Instrument Software Architecture
(VISA) layer, which is used to facilitate the transfer of data
by including additional robustness (e.g., error checking) to
the communication protocol. In some cases, applications
may call a driver which will then send one or more SCPI
commands to the VISA layer.

What Is the tm_devices Package?
Tektronix's tm_devices is a device management package
developed by Tektronix that allows users to control and
automate tests on Tektronix and Keithley products with the
programming language Python. It is easily installed using
pip, Python's package-management system. This package
includes a multitude of commands and functions to help
users easily automate tests on Tektronix and Keithley
products. The package can be used in the most popular
IDEs for Python and supports code-completion aids. This
package makes coding and test automation simple and easy
for engineers with software skills of any level.

Setting up your Environment
This section will guide you through the prerequisites and installations to prepare you to do development work with tm_
devices. We made a conscious choice to include instructions that support virtual environments in Python (venvs) because
we believe it makes your projects easier to manage and maintain, especially if you are just trying this package out before
committing to its usage.

Installation and Prerequisites Overview
1. Install Python.

a. Python >=3.8

2. PyCharm – PyCharm Installation, Starting a project, and tm_devices installation

3. VSCode – VSCode Installation, Starting a project, and tm_devices installation

4 | WWW.TEK.COM

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

https://www.python.org/downloads/

PyCharm Community (free) edition
PyCharm is a is a popular Python IDE used by software developers across all industries. PyCharm has an integrated unit
tester which allows users to run tests by file, class, method, or all tests within a folder. Like most modern IDE's it has a form
of code completion that speeds up your development tremendously over a basic text editor.

We will walk through the installation PyCharm community edition (free), followed by installing tm_devices in the IDE and
setting up a virtual environment to develop in.

1. Go to https://www.jetbrains.com/pycharm/.

2. Scroll past PyCharm Professional to PyCharm Community Edition, click download.

3. You should be able to proceed with just the default installation steps. We do not require anything unique.

WWW.TEK.COM | 5

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

https://www.jetbrains.com/pycharm/

4. Welcome to PyCharm!

Creating a new project + setting up virtual environment in PyCharm

5. Click "New Project".

6 | WWW.TEK.COM

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

6. Confirm path for project, make sure "Virtualenv" is selected.

7. Open a terminal. If your view does not include the labeled button at the bottom look for this:

WWW.TEK.COM | 7

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

8. Confirm virtual environment is set up by checking for (venv) before the prompt in your terminal.

9. Install driver from the terminal.
Type: pip install tm _ devices

10. Your terminal should be error free! Happy hacking!

Visual Studio Code
Visual Studio Code is another popular free IDE that software developers across all industries use. It is great for most
languages and has extensions for most languages that make coding in this IDE very convenient and efficient. Visual Studio
Code provides IntelliSense which is an extremely useful tool when developing as it aids in code completion, parameter
information, and other information regarding objects and classes. Conveniently, tm_devices supports code completion that
describes the command tree of the objects and classes.

We have an excellent guide on the installation of both Python and Visual Studio Code, including information on virtual
environment setup here.

8 | WWW.TEK.COM

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

https://tinyurl.com/bdfx5f7v

Example Code
In this section we will step through pieces of a simple code example and highlight some necessary components to use tm_
devices effectively.

Imports
from tm_devices import DeviceManager
from tm_devices.drivers import MSO5B

These two lines are critical to the effective usage of tm_devices. In the first line we import the DeviceManager. This will
handle the boilerplate connecting and disconnecting of multiple device classes.

In the second line we import a specific driver, in this case the MSO5B.

We setup a context manager with the DeviceManager:

with DeviceManager(verbose=True) as device_manager:

And then when we use the device manager and driver together:

 scope :MSO5B= device_manager.add_scope("192.168.1.1")

We can instantiate an instrument with a specific command set that matches its model. Just input your instrument's ip
address (other VISA addresses work as well).

With these four lines complete, we are able to start writing meaningful and specific automation for the MSO5B!

Code Snippets
Let's take a look at a few simple actions:

Setting the Trigger type to Edge

 # Setting Trigger A to Edge
 scope.commands.trigger.a.type.write("EDGE")

Here's how you would add and query a peak-to-peak measurement on CH1:

 # Specifying source as Channel 1
 scope.commands.display.select.source.write("CH1")
 # Identifying pk2pk as the measurement we would like to make
 scope.commands.measurement.addmeas.write('PK2Pk')
 # Make sure the operation is complete using the opc command
 scope.commands.opc.query()
 # Store the value locally before we print
 ch1pk2pk = float(scope.commands.measurement.meas[1].results.allacqs.mean.query())
 # Printing the value onto the console
 print(f'Channel 1 pk2pk: {ch1pk2pk}')

WWW.TEK.COM | 9

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

If you wanted to take an amplitude measurement on CH2:

 # Specifying source as channel 2
 scope.commands.display.select.source.write("CH2")
 # Identifying amplitude as the measurement we would like to make
 scope.commands.measurement.addmeas.write('AMPLITUDE')
 # Make sure the operation is complete using the opc command
 scope.commands.opc.query()
 # Store the value locally before we print
 ch2amp = float(scope.commands.measurement.meas[2].results.allacqs.mean.query())
 # Print the value onto the console
 print(f'amplitude: {ch2amp}')

Using IntelliSense/Code Completion
IntelliSense – Microsoft's name for Code Completion is a very powerful feature of IDEs we have tried to exploit as much
as possible.

One of the core barriers to automation with test and measurement devices is the SCPI command set. It is a dated structure
with syntax not widely supported in the development community.

What we have done with tm_devices is create a set of Python commands for each SCPI command. This allowed us to
generate Python code from existing command syntax to avoid manual development of the drivers, as well as create a
structure that is familiar to existing SCPI users. It also maps to the lower-level code that might require intentional debugging
during your program creation. The structure of the Python commands mimics the SCPI (or in some Keithley cases TSP)
command structure so if you are familiar with SCPI you will be familiar with these.

The following is an example of how IntelliSense shows all the commands available with the previously typed command.

In the scrollable list that appears after the dot on scope we can see an alphabetical list of scope command categories:

10 | WWW.TEK.COM

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

Choosing afg we are able to then see a list of afg categories.

Final command written with the help of IntelliSense:

 scope.commands.afg.amplitude.write(10e6)

Docstring Help
As you code, or as you are reading someone else's code, you can hover over different parts of the syntax to get that level's
specific help documentation. The closer you are to the full command syntax the more specific it will get.

WWW.TEK.COM | 11

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

Depending on your IDE conditions you can display both IntelliSense and docstring help at the same time.

With this guide you have seen some of the benefits of Tek's python driver package, tm_devices, and can start your automation
journey. With the easy setup, code completion, and built-in help you will be able to learn without leaving your IDE, speed up your
development time, and code with higher confidence.

12 | WWW.TEK.COM

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

There are contribution guidelines in the Github repo if you wish to improve the package. There are plenty of more advanced
examples highlighted in the documentation and within the package contents in the Examples folder.

Extra Resources
tm_devices · PyPI – Package driver download and information

tm_devices Github - Source code, issue tracking, contribution

https://github.com/tektronix/tm_devices#documentation – Online Documentation

Troubleshooting
Upgrading pip is usually a good first step to troubleshooting:

In your terminal type: Python.exe -m pip install -upgrade pip

Error: whl looks like a filename, but file does not exist OR .whl is not a supported wheel on this platform.

Solution: Pip installing wheel so that it recognizes the file format.

In your terminal type: pip install wheel

If you are needing to install wheel offline you can follow similar instructions as Appendix A, but it requires the tar.gz download
instead of the .whl file.

WWW.TEK.COM | 13

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

https://pypi.org/project/tm-devices/
https://github.com/tektronix/tm_devices
https://github.com/tektronix/tm_devices#documentation

Appendix A – Offline Installation of tm_devices

Local Installation in PyCharm
11. On a computer with internet access, download the latest tm_devices package here:

a. tm-devices · PyPI

12. Move the .whl file to your project folder.

13. Move back to PyCharm, ensure the .whl file is in the project folder.

14 | WWW.TEK.COM

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

https://pypi.org/project/tm-devices/

14. Open a terminal. If your view does not include the labeled button at the bottom look for this:

WWW.TEK.COM | 15

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

15. In your terminal type: pip install <specific filename and version of tm_devices>.whl
It should look similar to: tm_devices-1.0.0-py3-none-any.whl

Local installation in Visual Studio Code
In this section we will detail how to install the tm_devices package without a local internet connection.

1. On a computer with internet access, download the latest tm_devices package here:

a. tm-devices · PyPI

16 | WWW.TEK.COM

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

https://pypi.org/project/tm-devices/

2. Move the .whl file to the project folder you are working in.

WWW.TEK.COM | 17

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

3. Navigate to terminal in Visual Studio Code (Ctrl+Shift+P -> Create New terminal).
This example is using a virtual environment so it might look different if you are not.

4. Make sure that the file is in your working directory and type:
pip install <specific filename and version of tm_devices>.whl
It should look similar to: tm_devices-1.0.0-py3-none-any.whl

5. Installation successful if tm_devices imports have no error.

18 | WWW.TEK.COM

Simplifying Test Automation with tm_devices for Python HOW-TO GUIDE

Contact Information:
 Australia 1 800 709 465

Austria* 00800 2255 4835
Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835
Brazil +55 (11) 3530-8901

Canada 1 800 833 9200
Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777
Denmark +45 80 88 1401
Finland +41 52 675 3777

France* 00800 2255 4835
Germany* 00800 2255 4835

Hong Kong 400 820 5835
India 000 800 650 1835

Indonesia 007 803 601 5249
Italy 00800 2255 4835
Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777
Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 88 69 35 25
Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835
New Zealand 0800 800 238

Norway 800 16098
People's Republic of China 400 820 5835

Philippines 1 800 1601 0077
Poland +41 52 675 3777

Portugal 80 08 12370
Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564
Singapore 800 6011 473

South Africa +41 52 675 3777
Spain* 00800 2255 4835

Sweden* 00800 2255 4835
Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688
Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835
USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not
accessible, call: +41 52 675 3777

Rev. 02.2022

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. PCI Express, PCIE, and PCI-SIG
are registered trademarks and/or service marks of PCI-SIG. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.
110823 SBG 46W-74037-0

http://www.tek.com
http://www.tek.com

	Introduction
	What is a Programmatic Interface?
	What Is the tm_devices Package?
	Setting up your Environment
	Installation and Prerequisites Overview
	PyCharm Community (free) edition
	Visual Studio Code

	Example Code
	Imports
	Code Snippets

	Using IntelliSense/Code Completion
	Docstring Help
	Extra Resources
	Troubleshooting
	Appendix A – Offline Installation of tm_devices
	Local Installation in PyCharm
	Local installation in Visual Studio Code

